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Piezoelectric actuators and sensors made with a tubular structure can provide a great agility of 
effective response in the radial direction. For a radially poled piezoelectric tube, the effective 
piezoelectric constant in that direction can be tuned to be positive, zero or negative by varying the 
ratio of the outer radius (Ro) to the inner radius (ro) of the tube. For a suitable ratio of Ro/ro, this 
effective constant can also be changed in sign or set to zero by adjusting the d.c. bias field level for 
tubes made of electrostrictive materials. Therefore, one can make a piezoelectric transducer with 
all the effective piezoelectric tensile constants having the same sign. End-capped thin-walled 
tubes also exhibit an exceptionally high hydrostatic response, and the small size of the tubular 
structure makes it very suitable for integration into a 1-3 composite which possesses low acoustic 
impedance and high hydrostatic response. 

1. I n t r o d u c t i o n  
The recent advance in adaptive materials and struc- 
tures has put increasing demands on new materials 
and material structures to broaden the range of mater- 
ial properties provided by conventional materials 
1-1, 23. The novel concept of piezocomposites is one 
such example which combines two or more materials 
with complementary properties to expand the effective 
properties of the composite beyond those of each 
individual component [3, 4]. With the existing mater- 
ials, by structure modifications, one can also greatly 
improve the performance of devices. In this paper, we 
will examine the effective piezoelectric properties of 
a tubular structure and its composites formed from 
arrays of such tubes for both actuating and sensing 
applications. For a radially poled ceramic tube, the 
competition between the piezoelectric d33 effect and 
d3~ effect in the radial direction provides a convenient 
way to adjust the effective piezoelectric properties in 
that direction by changes in the tube radii. The small 
thickness of a thin-walled tube also makes it practical 
to use field-biased electrostrictive materials for ac- 
tuators and sensors, since only a low terminal d.c. 
voltage is required to produce substantial piezoelec- 
tric activities in materials with this geometry. 

2. P iezoe lect r ic  response of  a tube  under  
an e lect r ic  f ie ld 

When a radially poled tube is subjected to an electric 
field along the radial direction, on the average, the 
strain in the axial direction equals d31Em, where d3~ is 
the linear piezoelectric constant and Em is the average 
field in the material. The dimensional change in the 
radial direction, however, is complicated: In this sec- 
tion, the solution of the elastic equation for the tubu- 
lar structure under an electric field will be presented. It 
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will be shown that with the same applied electric field, 
the outer diameter (o.d.) (or the inner diameter (i.d.)) of 
the tube can either expand or contract depending on 
the ratio of the o.d. to i.d. of the tube. This phenom- 
enon is a direct consequence of competition between 
the piezoelectric d33 and d31 effects, which have oppo- 
site sign in producing the change in the tube o.d. under 
an electric field. 

For a tubular structure, it is convenient to use the 
cylindrical polar coordinate system, as shown in 
Fig. 1, in the analysis of the strain response of the 
sample under an electric field. The symmetry of the 
problem requires that the ~ component of the dis- 
placement field u, = 0. For a thin-walled tube one 
can neglect the coupling terms containing both r 
and z in the displacements field u and assume 
u = ur(r)? + uz(z)~. Under this approximation, the 
non-zero strain components are 

~u~ u~ ~u~ 
- -  ~ - -  U z  Z - -  Urr ~r u** r ~z 

The constitutive relations for the tube, therefore, are 

T= = c11Uzz + c12u** + clzurr - e31E 

Tr = c ~ u , ,  + clzu** + clzUzz -- e33 E 

T ,  = c12u= + c11u** + C12Ur~ -- e31E (1) 

where T=, Tr and T, are the stress components in the 
three directions, c u is the elastic stiffness constant, eij is 
the piezoelectric stress constant, and E is the applied 
electric field on the tube wall along the r direction. It is 
well known that the electric field is not a constant 
inside the tube wall and with a total voltage V applied 
on the tube, E = V / r l n ( R o / r o )  (to < r <_ Ro). In writ- 
ing down Equation 1, we also made the approxima- 
tion that the tube is isotropic elastically to simplify the 
analysis. The non-isotropic case will be addressed in 
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Figure 1 Schematic drawing of a radially poled ceramic tube with 
outer  radius Ro, inner radius r 0 and total length L. The electric field 
is applied on the tube wall along the radial direction. 

the next section when we discuss the hydrostatic re- 
sponse of end-capped tubes. Both the experimental 
results which will be presented later in this section and 
the analysis in the next section show that the errors 
due to the isotropic approximation are not significant. 

Making use of the constitutive Equation 1 and the 
static equilibrium condition, we can derive the basic 
elastic equations for this problem [5]: 

a7 kTt-~7-) j - 

~Uz 
- constant 

~z 

s11(1 + 0.)(1 - 2o") 
1 m (3- 

(2) 

where cy is Poisson's ratio and sl 1 is the elastic compli- 
ance. The solutions to Equation 2 are 

b / e 3 1 g ~ S l l ( 1  + 0.)(1 - 20.) 
ur = ar + - + / D 

r \ l n p ]  1 - 0. 
(3 )  

U z  z C Z  

where p = Ro/ro.  a, b and c are the integration con- 
stants which can be determined from the boundary 
conditions: u= = d 3 1 E m ,  where E m is the average 
electric field in the tube and E m = 2V/[(Ro + ro) 
x ln(Ro/ro)];  at r = Ro and r0 there is no external 
stress on the tube wall, which implies Tr = 0 at these 
two boundaries. Substituting Equation 3 into Equa- 

tion 1 and using the boundary conditions, one can get 

(1 - 20")d33 - 0.d31 
a = E m 

2(1 - 0.) 

d33 q- o-d31 
b = - RoroE m ~ ( ( f - -  

C = d 3 1 E  m (4) 

All the strain components for the tube can be obtained 
from Equations 3 and 4. Here we are more interested 
in finding out how the tube outer diameter changes 
with applied electric field as the ratio Ro/ro varies 
since in most of the applications, this is the quantity of 
interest. Substituting a and b in Equation 4 into the 
expression for ur and setting r = Ro yields the 
displacement of the tube outer wall ur(Ro): 

(Ro + ro)d31 q- (Ro - ro)d33 
ur(Ro) = E m 

2 

This equation reveals that ur(Ro) can be changed from 
positive to zero, and to negative, by varying the ratio 
of Ro/ro. 

To illustrate the advantage of using thin-walled 
tubes for actuator applications, one can compare the 
piezoelectric response of a tube discussed here with 
a rod of radius Ro and length L subjected to the same 
applied voltage V. For the rod, the field is applied 
along the axial direction and u= = d33V/L and 
Urr = d31 V/L.  For the tube sample, one can equiva- 
lently introduce the quantity u~/Ro as the effective 
strain in the radial direction: 

u~(Ro) [1 + (ro/Ro)]d31 + [1 - (ro/Ro)]d33 
- E m 

Ro 2 
(5 )  

Similar to a rod sample, we introduce the effective 
piezoelectric constants for the tube as if it were a rod 
poled axially: 

u= = d Ro 

where L is the axial length of the tube and V is the 
voltage applied on the tube wall. From Uzz = d3~Em 
and Equation 5, the effective piezoelectric constants 
can be deduced as 

2L 
d~f~ = d31 (Ro + ro)ln(Ro/ro) 

L d;~ = 

(Ro + ro)ln(Ro/ro) 

X I(1 "3f-~0)d31 "~-(1- ~0)d331 (7) 
For thin-walled tubes with L much larger than Ro, 
which is the case in most of the applications, both 
d~g and Aeff ~,31 can be exceptionally large. This demon- 
strates that the tubular structure has great advantage 
over the regular ceramic rod for actuator application. 
Besides that, by choosing [ l + ( r o / R o ) ] l d 3 1 ] >  

[ 1 -  (ro/Ro)]ld331, the effective d33 and d31 of the 
tube will have the same sign. By adjusting the ratio 
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Ro/ro, one can also continuously vary d;~ of the tube 
from positive to zero and to negative. 

To compare with the theoretical prediction, the 
displacement field u,(Ro) and u= of a radially poled 
PZT-5 tube were measured using a double-beam laser 
dilatometer [-6]. The ceramic tubes used were manu- 
factured by Morgon Matroc, Inc., Vernitron Divis- 
ions, with Ro = 0.635 mm and ro = 0.381 ram. From 
the data acquired and using Equations 3, 4 and 5, we 
got daa = 289 p C N  -1 and d31 = - 141.3 p C N  -~ for 
the tube material. For most of the commercially avail- 
able PZT materials, the ratio d33/d31 ranges from 2.15 
to 2.3 ]-7]. The measured ratio here (d33/d31 = 2.05) is 
slightly below that range which we believe is the result 
of the approximations used in the derivation. The 
effective piezoelectric constants defined in Equation 6 

"~ff = 8180 p C N  -a and for the tube, therefore, are -33 - 
d~ff 3220.5 pC N-1 .  the two coefficients have the 31 ~ -- 
same sign as predicted by Equation 7 and they are 
exceptionally large. 

The small thickness of the tube wall also makes it 
possible to use electric field-biased electrostrictive ma- 
terials for the actuator application, since only a small 
bias voltage is required here to induce substantial 
piezoelectric responses in the materials. In field-biased 
electrostrictive materials, it has been shown that the 
ratio of the piezoelectric constants d33/d31 is bias 
field-dependent [-8]. Hence, for a suitable ratio Ro/ro, 
by tuning the d.c. bias field level, both sign and 
magnitude of d ~  of the tube can be varied. 

3. The hydrostatic response of 
end-capped tubes 

The availability of small-sized ceramic tubes makes 
it attractive to integrate them in to  1-3 type 
piezoceramic-polymer composites for large-area 
applications and to provide more flexibility for further 
material property modification. Before a detailed dis- 
cussion on the composite properties, we will derive the 
expression for the hydrostatic response of end-capped 
tubes in this section since this is the most commonly 
used mode of piezo-tubes as hydrostatic sensors 
[9, 10]. Again here, the ratio Ro/ro provides a con- 
venient way to adjust the piezoelectric response of the 
sensor in the radial direction. 

Similar to the derivations presented in the preced- 
ing section, the displacement field of a tube under 
hydrostatic pressure, when expressed in the cylindrical 
coordinate system, is u, = 0 and u = u,(r)r + Uz(Z)2. 
(For an isotropic material, this is the exact form of the 
displacement field and for a poled ceramic tube, the 
error in using this form of the displacement field, as 
will be shown later, is less than 10%.) Since all the 
external forces are applied on the surfaces of the tube, 
there is no internal body force in the tube wall and 
Equation 2 becomes 

r \ 5 ~ - r  ] const. 5z - const. (8) 

The solutions to the equations are 

b 
u, = (9) a r  + - U z  = c z  

The non-zero strain components are 

b b 
Urr ~ a F2 IA,~ a Jr- ~ blzz ~ C 

(lO) 

where a, b and c are the integration constants. The 
boundary conditions which will be used to determine 
them are: since the two ends of the tube are sealed, 
there is no pressure inside the tube and at r = ro, 
T , = 0 ; a t r = R o ,  T ~ = - p ; a n d a t z = 0 a n d z = l ,  
the stress in the axial direction is Tz= 
- p R ~ / ( R ~ -  r~), where - p  is the applied hydros- 
tatic pressure. For  the purpose of comparison, we will 
determine the integration constants a, b and c in 
Equat ion9 for both elastically isotropic tubes and 
anisotropic tubes. For the anisotropic tube, the consti- 
tutive relations are 

T z ~- c11Uzz  -.[- c12u~ff + C13b/rr 

T r = C33Urr Jr- Cl3b/0~ -[- Cl3Uzz  

T 0 = c12u= + c11u,,  + c13u~ (11) 

where c u are the elastic stiffness coefficients of the 
poled ceramics. Following the convention in the 
literature, in Equation 11, 3 is referred to the poling 
direction (~ direction), 1 the ~ direction, and 2 the 
~) direction. Substituting the strain components in 
Equation 10 into Equation 11 and omitting the term 
in T~ having r dependence, one can obtain a, b, c: 

) 
a - RZ ~ ~ r 2  ~ c13(Clz + c13) c11(c13 + c33) 

(12a) 

- -  r o R 0  p (12b) 
b - R 2 r 2 o  C33 C13 

) 
c - Ro~--_ -2ro C13(C12 + C13) C11(C13 -1- C33) 

(12c) 

Therefore, the stress distribution in the tube is given 
by 

L _ 

r ,  - 

. 1  - 7/ (13a) 

F. 43 +_ 42 _-_c_ 1-_c12c3z 
R 2 -  r20Lc13(c,2 + c13) - c1,(c,3 + c33) 

+ Cll -- C 1 ~ 3 ( ? ' 2 ~  (13b) 

- cl3\ 2jA 

- -pR~ 
Rg -- rg (13c) 

In writing down Equation 13c, we omitted a term 
( C 1 2  - -  c13)b/r 2, which is less than 7% of the total T~. 
Since Tz itself is one of the boundary condition used to 
derive the integration constants a, b and c and is equal 
to - p R ~ / ( R g  - r2), the appearance of this extra term 
in the expression for Tz derived using Equations 11 
and i2 is clearly unphysical and is the error resulted 
from the approximation made regarding the displace- 
ment field for the tube under hydrostatic pressure. 
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However, the small size of this error (less than 7%) 
indicates the validity of this approximation. 

From the stress distribution equations, the hydro- 
static response of the tube can be calculated from the 
relation 

D 3 = d31T~ + d31T+ + d33Tr (14) 

where D 3 is the electric displacement in the poling 
direction. The value of the hydrostatic piezoelectric 
constant dh can be found by taking the average charge 
produced in the inner and outer surfaces of the tube 
wall and dividing it by the outer surface area of the 
tube. This yields, from Equation 14, 

1 { Ro 
dh = 2 d33 + R0 - ro 

[ ( C23 -}-C22- C21. C12C33 
X 1 + \ C13(C13 -}- C12)- Cl1(C13 + C33)/ 

-'~ Cllc33 ---- C13 ( r~00)l d31 t c 1 3  (15) 

In Equation 15, we have taken the tube outer surface 
as the total electroded area to calculate dh. Using the 
elastic stiffness coefficients for PZT-5H I-7], for a tube 
with Ro = 0.635 mm and r0 = 0.381 mm, Equation 15 
predicts d n = - 657 pC N-1  or 2.4d31. If the tube R0 
is doubled while keeping the wall thickness the same, 
the dh value can reach - 1786 pCN-1 .  Hence, for 
thin-walled tubes, an exceptionally large hydrostatic 
response can be achieved. 

Equation 13 can be reduced to the stress field of an 
elastically isotropic tube by using the isotropic condi- 
tions cl l  = c33, c12 = C13- It can be shown that the 
result thus obtained is the exact solution to the tube 
stress field, and similarly dh can be found by simplify- 
ing Equation 15 using the isotropic condition 

dh = ~ d33 "k 2 -'k d31 (16) 
R o -- 

For  the PZT-5H tube just calculated, the calculated 
dh value is - 5 9 4 p C N  -1 (2.17d31) when Equa- 
tion 16 is used. 

Experimental measurements were performance 
on several PZT-5 tubes (Ro = 0.635mm and 
ro = 0.381 mm) with two ends sealed and radially 
poled (the dielectric constant e for this group of 
sample is around 1700 at atmospheric pressure), dh 
was measured through the direct piezoelectric effect, 
where the charge induced on the electrodes of 
a sample is measured when the sample is subjected 
to a hydrostatic pressure, d31 and d33 were meas- 
ured using a double-beam laser interferometer I-6]. 
For this group of samples, dh was in the range from 
- 3 3 0  to - 4 0 0 p C N  - I  and d3t from - 1 4 0  to 
-160 pC N-1.  The ratio between the experimentally 

measured dh and d3t (on average) is 2.45, which is very 
close to that predicted from Equation 15. Clearly, to 
make a quantitative prediction about the hydrostatic 
response of a tubular structure, one may be required 
to include the elastic anisotropy in the calculation. 

By analogy with the situation discussed in the pre- 
ceding section, by varying the ratio of Ro/ro one can 

also manipulate the response of the tube to the stress 
field in the radial direction. Here, we will use the result 
just derived for the hydrostatic response of a tube as 
an example. In Equation 14, the hydrostatic response 
of a tube comes from three terms: one is from the 
pressure in the axial direction and the other two from 
the pressure in the radial direction. The electric dis- 
placement DR due to the pressure in the radial direc- 
tion is 

DR = d31T+ + d33 T~ 

Using the result of Equation (13) and taking the aver- 
age charge produced at the tube inner wall and outer 
wall, one can obtain the partial piezoelectric response 
d r of the tube to the pressure in the radial direction 

,{ Ro 
d r = ~ d33 + Ro - ro 

�9 c1~ + 51_2 _- _%1 z c12c32 
X[_\C13(C13 + C12)- Cl1(C13 + C33)/ 

+ d31 (17) C33 -- C13 
Obviously, the opposite sign of d33 and d31 provides 
a convenient way to change d ~ in Equation 17. One 
can easily verify that by varying the ratio Ro/ro, d r 
changes continuously from positive to zero, and to 
negative. Taking the elastically isotropic tube as an 
example and assuming d33/d31 = 2.2 in Equation 17, 
when ro/Ro = 0.375, d r becomes zero. That is, the tube 
now becomes insensitive to the pressure wave in the 
radial direction. Similar to the actuator case, for suit- 
able ratio of ro/Ro, one can also change the sign of the 
effective radial response here by using electrostrictive 
materials with different d.c. bias field levels. This re- 
sult, as well as the result in the preceding section, 
indicates that the range of the effective piezoelectric 
properties of the materials can be considerably 
broadened by using tubular structures. 

To calculate the hydrostatic figure of merit dhg h for 
this tubular sensor, we notice that in practice, the 
quantity is a measure of the product of the charge and 
voltage produced in unit volume of material. For 
a tubular material its effective volume is rcRZL, where 
L is the tube length when the end-capped tube is 
regarded as a rod with its radius equal to Ro. The 
capacitance of the tube is 

2nLeo~ 
C = 

In (Ro/ro) 

where e is the dielectric constant of the material. Since 
the total charge produced by the tube is equal to 
2rcRoLdh and the voltage is equal to this charge 
divided by the capacitance of the tube, the effective 
figure of merit for the tube is 

' ln(r ) dhgh -- 2~0 

(18) 
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Here, we have used the dh result for an isotropic tube 
(Equation 17). One can easily expand the result to 
elastically anisotropic materials. Clearly, for a 
thin-walled tube a large figure of merit can be ob- 
tained. 

4. 1-3 tubular composites 
A typical 1-3 tubular composite is schematically 
drawn in Fig. 2. For the composite discussed here, the 
tubes are radially poled and the composite is elec- 
troded on the two end-faces. Hence, a special arrange- 
ment is required to ensure proper electric connections 
between the electrodes at the tube walls and the com- 
posite end-faces. This kind of composite can be used 
for large-area actuator and sensor applications, as well 
as "smart" materials where both sensor and actuator 
are integrated into one structure. In this section, we 
only discuss the properties associated with sensor 
applications. 

When tubes are integrated into a 1 3 type 
ceramic-polymer composite, as has been demon- 
strated in our earlier publications, there is a stress 
transfer between the polymer matrix and the ceramic 
tubes in the z direction [11, 12]. This stress transfer is 
a result of the difference in the elastic constants be- 
tween the two constituent phases and is through the 
shear force in the two phases. Due to this stress trans- 
fer, the piezoelectric response of the tube in the axial 
direction is enhanced. To provide a physical picture of 
how the hydrostatic response of a tubular 1-3 com- 
posite changes as the elastic properties of the two 
constituent phases and their geometric parameters are 
varied, we will treat quantitatively the composite sche- 
matically drawn in Fig. 3. This composite corresponds 
to the tubular composite in the dilute limit. However, 
since only the polymer matrix close to the ce- 
ramic-polymer interface participates the stress trans- 
fer, the result can also be applied to the composite 
with finite ceramic content. 

The procedure of calculating how much stress is 
transferred from the polymer phase to the ceramic rod 

Ceramic tubes 

| 

11 

Polymer matrix 

Figure 2 Schematic drawing of 1-3 tubular composite where the 
ceramic tubes are embedded in a polymer matrix. The ceramic tubes 
are either end-capped or filled inside with epoxy. 
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Figure 3 A single tube 1-3 composite. The ceramic tube is end- 
capped. 

is similar to that outlined in the earlier publications. 
[11, 12]. Under hydrostatic pressure p, the surface 
displacement field u= of the polymer phase in the 
z direction should satisfy the equation 

2uz 

L 
- -  ($11 + 2S12)p  

[~2uz + l ( O u z ~  (19) + 

where p is the hydrostatic pressure, sq is the elastic 
compliance of the polymer phase, p. is the shear 
modulus of the polymer phase, and L is the thickness 
of the composite in the z direction. The solution to 
Equation 19 is the zero-order Hankel function K o ( 9 )  

and 

2u= (1 - 2cy)p 
- + A K o ( r / ~ )  (20) 

L Y 

where A is the integration constant and 
= L / [ 2 ( 2 Y / g )  1/z] defines the strain decay length in 

the polymer phase. In Equation 20 we have made use 
of the relations s12 = - -  G'Sll and Y =  1/Saa, where 
Y and cy are the Young's modulus and Poisson's ratio 
of the polymer, respectively. The total force f transfer- 
red from the polymer phase to the ceramic tube is 
therefore 

= _ r f =  f 2 rc rAKo(r /~ )  dr  
Ro 

Two boundary conditions are needed to determine f 
The first one is the boundary condition that at the 
ceramic tube-polymer interface, the z component of 
the strain in the two phases should be equal, and the 
second is the relation between the z component of the 
strain in the ceramic tube and the stress field 

pR2(1  - 2o'~ f s ] l  

u== - R2o -- r 2 + rc(R2o - r I )  (21) 

where s]l and ~~ are the elastic compliance and 
Poisson's ratio of the ceramic tube, respectively. Equa- 
tion 21 can be derived by following the procedure 
outlined in the preceding section. Hence, the amount 
of stress transferred from the polymer matrix to the 



ceramic tube is 

f _ p R ~ ( A o ( 1  - 2~) / (RZYs]I)  - (1 - 2cy~ "] 

(22) 

where Ao = (R 2 - r ~ ) ,  9o = Ro/~ and Ka(P) is the 
first-order Hankel function. Since the polymer phase 
is subjected to a hydrostatic pressure, the Poisson's 
ratio effect causes a reduction of the effective pressure 
at the polymer faces from - p  to - p ( 1  -2cy). As 
shown in Equation 22, this reduces the stress transfer 
from the polymer phase to the ceramic tube. To in- 
crease the stress transfer, one should choose polymers 
with a small Poisson's ratio. The total stress in the 
axial direction of the tube is 

_Ao(1 - 2 ~ / ( R ~ Y s ] I ) - ( I  - 2cy ~) "] 

T~ - + 1 + Ko(Po)Ao/[ZKl(Oo)Ys]aRo~]]  

pR 2 
T~ - ? (23) 

Ao 

where y is introduced as the stress amplification fac- 
tor. In Fig. 4 we plot ~, as a function of the aspect ratio 
R o l L  for a 1-3 tubular composite made of PZT-5H 
tube with Ro = 0.635mm and ro = 0.381mm and 
Spurrs epoxy. The data used are: Y = 3.1 (109 Nm-2) ,  

= 1.148 ( t09Nm-2) ,  and cy = 0.35 for spurs epoxy 
(from Oakley [13]; Six = 1.64 (10-11mZN -1) and 
cy = 0.31 [7]. Apparently, for thin and long tubes, the 
stress amplication factor is large. This is similar to that 
obtained earlier for 1-3 composites made of ceramic 
rods [11, 12]. 

Using the results from section 3 and Equation 23, 
one can write down the effective hydrostatic piezoelec- 
tric strain coefficient for 1-3 tubular composites as 

d~ff _ L d33 + Ro ~ ro Ro vc 1 + ? + d31 

(24) 

where vc is the volume content of ceramic tubes in the 
composite which is defined as vo = nR2/a,  and a is the 
unit cell area of the composite. For a composite of low 
ceramic volume content, Y in Equation 22 is equal to 
that in Equation 24. With increased volume content, 

3 . 5  " ' ' ' I . . . .  I . . . .  I ' " " ' I . . . .  I . . . .  

3.0 

2.5 

2.0 

1.5 

1.0 
0.0 

. . �9 . I ] . . . I . . . . a . �9 . . i . i i i I , I I 

0.1 0.2 0.3 0.4 0.5 
Aspect ratio, R o / L 

0.6 

Figure 4 The stress amplification factor y (Equation 23) as a func- 
tion of the aspect ratio RolL of the ceramic tube for the composite 
drawn in Fig. 3 with PZT-5H ceramic tube and spurs epoxy. 

the dependence of Y on the material properties of the 
constituent phases will become more complicated and 
one may not be able to derive the analytical expres- 
sion for ? except in some special cases. In this paper, 
we will not pursue this further and only point out that 
in the composite, there is always a stress transfer 
between the two phases (? > 1); the general rule to 
increase this stress transfer is basically the same as 
that for the dilute composite case. 

In the limit of vc ~ 1, Equation 24 is reduced to that 
for a single tube when regarded as a rod with similar 
dimensions: 

d~ff L d33 + + d31 
Ro Ro --  ro \ 

(25) 

d~ffg~ ff - 

Equation 16 can be converted to Equation 25 by using 
the area of the tube end 0zRo z) as the effective electrode 
area instead of the area of the tube outer wall. Sim- 
ilarly, one can also derive the effective hydrostatic 
figure of merit for 1 3 tubular composites as 

2~o 

[ .o(1 
x d33 + Ro ~ ro 

ro ),:j2 
+ ~ o + Y  1 

(26) 

As vc ~ 1 (7 ~ 1), the result is reduced to that for 
a single tube sensor (Equation 18). 

For comparison, in Table I we present the experi- 
mental values of the hydrostatic response of an end- 
capped ceramic tube, a 1-3 composite with tubes 
having inside air backing, and a 1-3 composite with 
tubes having inside epoxy backing. All 1 3 composites 
had a volume content of 23.3% ceramic tube and 
the dimensions of the tubes are Ro = 0.635 mm, 
ro = 0.381 mm and L = 9 mm. The polymer matrix 
was made of spurs epoxy. In the composite with epoxy 
backing, the tube inside was filled with Spurrs epoxy. 
d31 listed in the table was calculated using Equa- 
tion 25 where the ratio d33/d31 = 2.2 is used. From 
this d31, 7 was calculated from Equation 26. Clearly, 
the ? value here is much smaller than that shown in 
Fig. 4 (Ro/L = 0.07 here). One of the reasons for this is 
that Fig. 4 is for the composite in the dilute limit; the 
? value for composites with a finite ceramic content 
should be smaller than that in Fig. 4. The !mperfect 
stress transfer between the two phases and the dePol- 
ing effect of the tubes during epoxy curing may also be 
responsible for this reduction of 7. Although the data 
in Table I show that the hydrostatic responses of the 
composites tested are not as high as that of the single 
tube, the difference is not very large. As the volume 
content of the ceramic tube and other parameters in 
a composite are varied, the effective hydrostatic figure 
of merit for 1-3 tubular composites will change. In the 
optimum condition, one would expect that d~ffg~ff for 
a tubular 1-3 composite may exceed that of a single 
tube. Apparently, further experimental and theoretical 
work is required to address this issue. Furthermore, 
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T A B L E  I Hydrostatic properties of the end-capped tube and 1-3 tubular composites 

E d eft (pC N - 1 ) deft eff(10-15 m 2 N -  1 ) h h gh ' dal (P C N - 1 )  Y 

End-capped tube 2945 - 14330 10000 - 235 i 
Composite 

Air backing 2922 - 5502 6389 - 235 2.11 
Epoxy backing 2944 - 4970 5172 - 235 

the figure of merit of 1-3 tubular composites is much 
higher than that of 1-3 composites made of ceramic 
rods [12]. 

If there was no stress transfer from the polymer 
phase to the ceramic tubes in these tubular com- 
posites, one would get for this 1-3 composite 
d~ ff --- 3339pCN -1 and d~ffg~ff = 2 3 5 3  • 10 -15  m 2 N  - 1 ,  

which are much smaller than the values listed in 
Table I. This clearly demonstrates the importance of 
the stress transfer between the two phases in a 1-3 
composite. 

One interesting feature from Table I is that the 
hydrostatic response of the 1-3 tubular composite 
with epoxy backing does not differ very much from 
that with air backing. That is, the epoxy filling inside 
a tube does not change the stress distribution in the 
tube wall significantly except to transfer stress in the 
z direction. This can be understood by considering the 
following fact: the elastic moduli of the ceramic tube 
are much higher than those of epoxy, and as a result 
the ceramic tube wall practically shields the epoxy 
filling inside the tube from seeing the pressure in the 
radial direction. Conversely, the epoxy inside the tube 
does not exert a significant amount of stress on the 
ceramic tube wall in the radial direction. Therefore, 
the epoxy filling inside a tube provides an effective 
way to enhance the mechanical strength while keeping 
the hydrostatic response of the composite almost 
intact. 

5. Summary 
In this paper, the effective piezoelectric responses of 
the tubular structure and its composites were evalu- 
ated both theoretically and experimentally. When 
used as actuators, the effective piezoelectric constant 
in the radial direction of a tube can be changed from 
positive to zero and to negative by adjusting the ratio 
Ro/ro for piezoelectric materials or the d.c. bias field 
for electrostrictive materials. Therefore, the effective 
piezoelectric constants along the axial direction and 
the radial direction can both have the same sign. For 
sensor applications, the tube with two ends sealed 
exhibits an exceptionally high hydrostatic response 
and, analogous to the situation with actuators, the 
pressure response in the radial direction can be ad- 
justed by the ratio Ro/ro for piezoelectric materials or 

the d.c. bias field for the electrostrictive materials. For 
large-area applications, these tubes can be readily 
integrated into a 1-3 composite structure which pro- 
vides a low acoustic density and high piezoelectric 
activity. The effectiveness of the stress transfer be- 
tween the polymer phase and the ceramic tube in a 1-3 
composite makes it possible to back-fill the inside of 
the ceramic tube, which increases the mechanical in- 
tegrity of the tubular structure while keeping the 

�9 piezoelectric response of the composite almost intact. 
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